An Advanced and more Efficient Built-in Self-Repair Strategy for Embedded SRAM with Selectable Redundancy

نویسنده

  • A. Sharone Michael
چکیده

Built-in self-test (BIST) refers to those testing techniques where additional hardware is added to a design so that testing is accomplished without the aid of external hardware. Usually, a pseudo-random generator is used to apply test vectors to the circuit under test and a data compactor is used to produce a signature. To increase the reliability and yield of embedded memories, many redundancy mechanisms have been proposed. All the redundancy mechanisms bring penalty of area and complexity to embedded memories design. To solve the problem, a new redundancy scheme is proposed in this paper. Some normal words in embedded memories can be selected as redundancy instead of adding spare words, spare rows, spare columns or spare blocks. Built-In Self-Repair (BISR) with Redundancy is an effective yield-enhancement strategy for embedded memories. This paper proposes an efficient BISR strategy which consists of a Built-In Self-Test (BIST) module, a Built-In AddressAnalysis (BIAA) module and a Multiplexer (MUX) module. The BISR is designed flexible that it can provide four operation modes to SRAM users. Each fault address can be saved only once is the feature of the proposed BISR strategy. In BIAA module, fault addresses and redundant ones form a one-to-one mapping to achieve a high repair speed. Besides, instead of adding spare words, rows, columns or blocks in the SRAMs, users can select normal words as redundancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Built-in Self Repair Analyzer for Embedded word oriented SRAM and DRAM Memories with selectable redundancy

This paper proposes Built-In Self-Repair Analyzer (BISR) strategy with Redundancy which is an effective yieldenhancement strategy for embedded memories. It consists of a Built-In Self-Test (BIST) module, a Built-In Address-Analysis (BIAA) module and a Multiplexer (MUX) module. The BISR is designed flexible so that it can provide four operation modes to SRAM users. The feature of the proposed BI...

متن کامل

Efficient Built-in Self-repair Strategy for Embedded Sram with Selectable Redundancy

Built-In Self-Repair (BISR) with Redundancy is an effective yield-enhancement strategy for embedded memories. This paper proposes an efficient BISR strategy which consists of a Built-In Self-Test (BIST) module, a Built-In Address-Analysis (BIAA) module and a Multiplexer (MUX) module. The BISR is designed flexible that it can provide four operation modes to SRAM users. Each fault address can be ...

متن کامل

A Built-In Self-Repair Scheme for Semiconductor Memories with 2-D Redundancy

Embedded memories are among the most widely used cores in current system-on-chip (SOC) implementations. Memory cores usually occupy a significant portion of the chip area, and dominate the manufacturing yield of the chip. Efficient yield-enhancement techniques for embedded memories thus are important for SOC. In this paper we present a built-in self-repair (BISR) scheme for semiconductor memori...

متن کامل

FPGA Implementation of SRAM Memory Testing Technique Using BISR Scheme

As RAM is major component in present day SOC, by Improving the yield of RAM improves the yield of SOC. So the repairable memories play a vital role in improving the yield of chip .Built-in self-repair (BISR) technique has been widely used to repair embedded random access memories (RAMs). If each repairable RAM uses one self contained BISR circuit (Dedicated BISR scheme), then the area cost of B...

متن کامل

Sram Memory Testing Technique Using Bisr Scheme

Random Access Memory is major component in present day SOC, by Improving the yield of RAM improves the yield of SOC. So the repairable memories play a vital role in improving the yield of chip. Built-in self-repair (BISR) technique has been widely used to repair embedded random access memories (Ram's). If each repairable RAM uses one self contained BISR circuit (Dedicated BISR scheme), then the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013